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Abstract: Atherosclerosis is a multifactorial inflammatory pathology that involves metabolic pro-
cesses. Improvements in therapy have drastically reduced the prognosis of cardiovascular disease.
Nevertheless, a significant residual risk is still relevant, and is related to unmet therapeutic tar-
gets. Endothelial dysfunction and lipid infiltration are the primary causes of atherosclerotic plaque
progression. In this contest, mitochondrial dysfunction can affect arterial wall cells, in particular
macrophages, smooth muscle cells, lymphocytes, and endothelial cells, causing an increase in reactive
oxygen species (ROS), leading to oxidative stress, chronic inflammation, and intracellular lipid depo-
sition. The detection and characterization of mitochondrial DNA (mtDNA) is crucial for assessing
mitochondrial defects and should be considered the goal for new future therapeutic interventions. In
this review, we will focus on a new idea, based on the analysis of data from many research groups,
namely the link between mitochondrial impairment and endothelial dysfunction and, in particular, its
effect on atherosclerosis and aging. Therefore, we discuss known and novel mitochondria-targeting
therapies in the contest of atherosclerosis.

Keywords: mitochondrial disorders; atherosclerosis; endothelium; cardiovascular disease; coronary;
aging; therapies to counteract mitochondrial dysfunction

1. Introduction

Despite tremendous progresses in therapy in the last few years, cardiovascular diseases
are still the leading cause of death worldwide [1,2]. To date, 18 million people die each
year due to cardiovascular diseases [1,3–7]. These numbers are expected to increase,
reaching 24 million yearly deaths worldwide from cardiovascular-related disease by 2030,
with an average of over 66,000 per day, and a total global cost rising to over 1 trillion
USD [1,3–7]. After a decline in mortality in recent decades, the numbers are rising again,
reversing years of progress in both ischemic heart and cerebrovascular disease [1,4]. Thus,
cardiovascular prevention is essential to make a 25% reduction in premature mortality from
non-communicable diseases more realistic. There is an urgent need for plans and policies
to reduce the burden of cardiovascular diseases which are a health challenge, starting from
the territory and the role of cities in promoting health. There is also a need for improving
our understanding of the basic mechanisms underlying cardiovascular diseases to design
tailored therapy.

The atherosclerotic process is very often responsible for several cardiovascular and
cerebrovascular diseases [8]. It is now well accepted and documented that atherosclero-
sis starts from endothelial dysfunction and lipid deposition, which progresses through
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macrophage infiltration, smooth muscle cell migration, and blood borne material depo-
sition and becomes clinically relevant due to complications, eventually leading to local
intravascular thrombus formation [8,9]. Modified lipoproteins, mainly oxidized low-density
lipoproteins (oxLDL), are considered the major contributors to the genesis, progression,
and immunological response occurring during the atherosclerotic process [10,11]. The first
report linking mitochondria to atherosclerosis is from 1970 [12]. However, only in the last
few years has increasing evidence really underlined the key role of mitochondrial dynamics
in the pathogenesis of atherosclerosis [13]. Vascular cells, such as endothelial and smooth
muscle cells, due to their metabolic functions and their barrier role are the main targets
of mitochondrial dysfunction. In the atherosclerosis process, dysfunctional mitochondria
might cause alterations in cellular metabolism and respiration resulting in the excessive
production of reactive oxygen species (ROS), leading to oxidative stress [13]. While low
levels of ROS exert important signaling functions [14,15], elevated ROS production in-
duces the damage of cellular structures, alters DNA, proteins, and other molecules [16].
These conditions can become chronic, thereby favoring atherosclerosis progression and
destabilization [17]. It is important to point out that mitochondrial dysfunction can be
inherited and acquired [18]. Primary mitochondrial disease (PMD) is clinically diagnosed
and confirmed by pathogenic mitochondrial DNA (mtDNA) or nuclear DNA (nDNA)
mutations [18]. However, there are some disorders with a ‘mitochondrial’ phenotype
without identifiable mtDNA or nDNA mutations, or with variants of unknown clinical
significance [18]. Conversely, secondary mitochondrial dysfunction (SMD) can be caused
by genes encoding neither function nor production of oxphos proteins, and associated
with many hereditary non-mitochondrial diseases [18]. This SMD can also be related to
nongenetic causes, such as environmental factors and ageing. The strong relationship
between ageing, atherosclerosis, and cardiovascular diseases is well established [19], and a
correlation between mitochondrial dysfunction–ageing, and vice-versa, cannot be ruled
out [20]. In this review, we will particularly focus on the relationship between mitochon-
drial function and atherosclerosis, starting from its molecular basis to clinical perspectives
and therapeutic options.

2. Mechanism of Mitochondrial Dysfunction and Molecular Implication for the
Cardiovascular System

Mitochondria represent the engine of human cells generating ATP, and their function
is regulated via mitophagy. However, mitochondria are also involved in the production of
metabolites for protein assembling and signal transduction. Their metabolism is influenced
by Ca2+ levels: low calcium concentrations can lead to mitochondrial dysfunction, while
high levels of calcium can increase mitochondrial permeability [21].

As compared to other organs, the heart needs a high amount of energy; this is produced
by oxidative metabolism in the mitochondria, which are one-third of the total volume of
cardiomyocytes [22].

Mitochondrial dysfunctions are strongly related to cardiovascular diseases, in particu-
lar ischemic heart disease and atherosclerosis, cardiomyopathy, and hypertension [23]. This
altered mitochondrial function results in reduced ATP, impairment of mitochondrial regula-
tory roles, reactive oxygen species (ROS) production and related signaling, cell growth and
apoptosis, impaired mitochondrial electron transport chain activity, and an inflammatory
response [24–27].

Mitochondrial fission and fusion impairments have been related to the development
of cardiovascular diseases [28]. Novel mitochondrial biomarkers have been proposed to
identify patients that can benefit from therapies specifically targeting mitochondria [29].

Mitochondrial homeostasis plays a crucial role in cells with high energy consumption,
and in the pathological development of ischemic heart disease [30]. In particular, variation
in the level of Ca2+ in mitochondria could lead to altered contraction coupling [31] and
increased ROS levels during ischemic myocardial reperfusion, thereby inducing mitochon-
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drial membrane damage, abnormal ATP synthesis, increased levels of Ca2+, and mPTP
opening [32].

Thus, during ischemia, the mitochondrial succinate significantly increases in injured
tissue [33,34], while during reperfusion, the accumulated metabolites are oxidized by the
mitochondrial respiratory chain enzyme SDH (succinate dehydrogenase). This drives reac-
tive oxygen species (ROS) production by reverse electron transport (RET) at mitochondrial
complex I, stimulating mitochondrial permeability transition pore opening, and cell death
associated with ischemia/reperfusion damage [35–38]. Sazanova et al. have demonstrated
that specific mutations in the coding region of the mitochondrial genome, in particular
m.14459G>A and m.5178C>A, are risk factors for occurrence and development of cardiac
angina, while the mutation m.15059G>A instead had a protective effect [39].

Atherosclerosis is a chronic inflammatory condition characterized by impaired lipid
metabolism, which stimulates innate and adaptive immune responses [9]. The presence of
lipids in the intimal layer of arteries significantly affects mitochondrial activity/function.
There are several mechanisms related to atherosclerosis progression and plaque instability,
such as mutations in mitochondrial DNA (mtDNA), reactive oxidative species (ROS), and
respiratory chain alterations, which induce hypertrophy of vascular smooth myocytes [40].
Mitochondrial ROS, associated with several risk factors, such as hyperglycemia and hyper-
cholesterolemia [41], are involved in the expansion and potential damage of atherosclerotic
plaques, particularly by inducing endothelial dysfunction, promoting monocyte infiltration,
and increasing vascular smooth muscle cell and endothelial cell apoptosis [42].

Accumulation of ROS in the inner mitochondrial membrane can alter the mitochon-
drial cholesterol transporter, steroidogenic acute regulatory protein (StAR), which inhibits
the storage of cholesterol through the mitochondrial membrane [43].

Under pathophysiological conditions, the dysfunctional mitochondria can stimulate
the production of large amounts of ROS from adjacent mitochondria, modifying membrane
potential, a process well known as “ROS-induced ROS”. Normally, this process of ROS is
balanced by endogenous antioxidants. On the other hand, when there is an oxidative stress
and hyper-production of ROS, the oxidative impairment in the arterial wall is increased [44],
and a progression of the atherosclerotic plaque can be activated [45].

Mutations in mtDNA, related to ROS derived from mitochondrial dysfunction, are
more frequent than in nuclear DNA and can cause impaired mitochondrial respiration
in smooth muscle monocytes and macrophages, thereby contributing to atherosclerotic
plaque progression [41]. In vitro studies have demonstrated that the damage induced
byROS on mtDNA inhibits protein synthesis and alters gene expression, suggesting that
ROS might mediate vascular cell dysfunction in the setting of atherogenesis [46] associated
with changes in mitochondrial genome [47].

On the other hand, recent studies have put into question the correlation between ROS
and mtDNA damage, highlighting that impaired mtDNA was observed in vascular and
circulating cells before the development of atherosclerotic lesions [46]. Thus, these data
suggested that the primary event is associated with mtDNA damage which increases ROS
generation and variations in mitochondrial dysfunction and membrane potential, followed
by activation of the apoptotic mechanism. Moreover, endogenous mitochondrial damage-
associated molecular patterns (mtDAMPs) trigger sterile inflammation through various
signaling pathways, including toll-like receptors (TLRs), nuclear factor kappa beta (NF-κβ),
and the NOD-, LRR-, and pyrin domain-containing protein 3 (NLRP3) inflammasome [48].
In addition, damaged mtDNA can be seen as an endogenous damage-associated molecular
pattern (DAMP), activating the inflammatory response [49].

Oxidized LDL (oxLDL) is involved in apoptosis through calcium-dependent mitochon-
drial pathways, mediated by cytochrome C and apoptosis-inducing factors [50]. In addition,
oxLDL induces mitochondrial DNA (mtDNA) damage in atherosclerotic plaques, resulting
in reduced aerobic respiration in the cap and core regions, thus decreasing the expression
of complex I in vascular smooth muscle cells [45], which promotes the development of
the necrotic core and the thickening of the fibrous cap in atherosclerotic plaques. Thus,



Int. J. Mol. Sci. 2023, 24, 1086 4 of 12

oxLDL inhibits mitochondrial enzymes and modifies mitochondrial membrane potential
causing production of MitoROS associated with endothelial apoptosis and atherosclerotic
plaque progression [51,52]. Notably, damage to mitochondria of inflammatory cells, as
macrophages or monocytes, induces plaque progression and complication, such as erosion
or rupture [13].

3. Mitochondrial Dysfunction and Endothelial Dysfunction

Endothelial cells represent the barrier for the molecular transport between blood and
tissue, regulating the exchange of nutrients [53] and the vascular tone by production of
nitric oxide (NO) and contractile factors. Nevertheless, in addition to its function as a
barrier, the endothelium modulates inflammation, lipid metabolism, vascular tone, and
hemostasis, and prevents penetration of inflammatory cells into the bloodstream. It also
secretes adhesion molecules and cytokines involved in the inflammatory cascade [54,55].

Endothelial cells’ dysfunction is characterized by ROS production, in particular from
mitochondria, infiltrations of LDL, and subsequent oxidation to oxLDL [56], which might in-
duce endothelial impairment. This enhances the expression of adhesion molecules ICAM-1,
VCAM-1, and P-selectins, resulting in smooth muscle cell growth and activation of inflam-
matory cells, such as monocytes and macrophages, thereby causing a pro-inflammatory
burden by releasing cytokines and increasing circulating immune cells’ adhesion to the
endothelium [57].

Damaged endothelium produces growth factors, which activates smooth muscle cells
(SMCs) in the vascular bed and the phagocytosis of lipids, with subsequent evolution into
the fibrous cap [58].

Mitochondria are important regulators of apoptosis and NO production in vascular
endothelial cells, stimulating the cellular response to stress [59]. At the same time, the
amounts of mitochondria in the endothelium are not abundant, but despite that, mito-
chondria not only affect energy supply, but also regulate blood oxygen levels and mediate
NO-mediated vasodilation [60,61]. The decreased NO production in atherosclerotic plaques
is mainly due to endothelial NO synthase (eNOS) degradation, induced by ROS-mediated
oxidative stress. In addition, eNOS decoupling dysfunction produces additional ROS,
which interfere with endothelial function, inducing the progression of atherosclerosis [62].

Recent studies have highlighted that the transcription factor NF-E2 p45-related factor 2
(Nrf2; gene name NFE2L2) regulates some mitochondrial functions [63] via the mtROS
pathway, such as antioxidant activity, autophagy, and metabolism [64]. Nrf2 has a crucial
role in the maintenance of cellular redox homeostasis by regulating biosynthesis, utilization,
and regeneration of glutathione, thioredoxin, and NADPH, and controlling the production
of ROS by mitochondria and NADPH oxidase. Moreover, Nrf2 activation inhibits Drp1-
mediated mitochondrial fission, improving endothelial dysfunction [65].

Incubation of endothelial cells with oxLDL leads to an increase in the activity of
mitochondrial complex I and oxidative stress [66], thereby stimulating the transcription
and expression of superoxide dismutase 2 (SOD2) in macrophages [67].

Activation of mitophagy, a lysosome-mediated selective mitochondria degradation [68],
is one of the characteristic signs of mitochondrial dysfunction and damage and leads to
membrane potential collapse, increased ROS production, and decreased ATP levels, ox-
idative stress, and apoptosis [69]. The balance between mitophagy and mitochondrial
neogenesis is crucial for correct homeostasis in the human body [70]. Mitochondrial bio-
genesis is an important process for maintaining energy control and protecting endothelial
cells’ survival in critical pathological scenarios [71,72]. Mitochondrial dysfunction might
represent the first real step of atherosclerosis by determining the endothelial impairment,
which is the starting point of the atherosclerotic process [21].

The endothelial dysfunction, in particular decreased vasodilatation, is also typical of
MELAS (Mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes)
patients [73].
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These patients can have lower levels of l-arginine, which regulates the endothelial-
dependent vascular relaxation [74], which was significantly lowered in both acute and
interictal phases of MELAS as compared to control subjects [75].

A schematic view of the atherosclerotic mitochondria-related process is shown in
Figure 1.
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4. Clinical Perspectives and Therapeutic Implications: Something New?

In the last twenty years, several efforts have been made to evaluate pharmacological
strategies to modulate mitochondrial function. Many preclinical and clinical studies have
been designed based on the available literature, which support the notion that mitochon-
dria might be crucial for the treatment of cardiovascular diseases. However, no specific
studies are currently available on atherosclerosis. Starting from the concept that during
cardiovascular stress mitochondrial oxidative function is enhanced, a primary therapeu-
tic approach might be based on the reduction of this activation [23,76]. The first report
targeting mitochondrial function with antioxidants (i.e., MitoQ) has reduced doxorubicin-
induced cardiomyopathy in an animal model [77], and increased endothelial performance
in the elderly [78]. Upcoming clinical trials (NCT03586414) will reveal the effect of Mi-
toQ supplementation as a therapeutic modality for improving health outcomes in cardiac
patients [79]. An alternative strategy to recover mitochondrial function is nicotinamide
adenine dinucleotide (NAD+) supplementation [79]. It has been reported that both nicoti-
namide riboside and nicotinamide mononucleotide may improve cardiac function [80] and
reduce stroke occurrence in several preclinical models [81]. Potential benefits of NAD+
supplementation have also been reported in heart failure patients [82]. Other general
approaches might have the potential to preserve mitochondrial activity. First, it has been
reported that resveratrol and curcumin may improve mitochondrial function in exper-
imental models of heart diseases [83]. Moreover, some lifestyle interventions, such as
caloric restriction and exercise, contribute to rescuing mitochondrial dysfunction [79,84]. A
more specific modulation with elamipretide is under clinical investigation [85]. This is a
cell-permeable small peptide SS-31 which improves homeostatic mitochondrial activities
and cardiac function [85]. Despite the failure in limiting restenosis in the clinical contexts
of coronary and renal angioplasty [86,87], promising results have been reported in an
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experimental model of heart failure [88], and it is actually under evaluation in clinical trials
enrolling patients with heart failure [89].

Other specific agents targeting specific mitochondrial activities (such as mitophagy
and/or autophagy, mitochondrial calcium uniporter protein, Ca2+-responsive enzymes,
damage-associated molecular patterns, miRNA-targeting strategies) might have potential
as direct or indirect therapeutical modulators of mitochondrial functions [85]. However,
some of these new compounds have multiple targets, and thus it becomes difficult to
establish the appropriate dose to specifically target mitochondrial dynamics [85]. Moreover,
based on the available data, modulation of mitochondrial dynamics might be beneficial
only in the short term, since detrimental cardiac effects may occur in the long term [85].
Thus, modulators of mitochondrial dynamics have not yet been tested on patients affected
by cardiovascular diseases.

A new therapeutic perspective is characterized by neutralization of mitochondria
by ROS, targeting ROS scavengers to the site of action, or by induction of mitochondrial
biogenesis. Recently, new mitochondria targeted-antioxidants, preferentially delivered
to the mitochondrial compartment to scavenge mitochondria-derived ROS, have been
proposed to increase antioxidant levels specifically in mitochondria [90,91]. In partic-
ular, Karnewar et al. [92] have demonstrated that an an alkyl TPP + -tagged esculetin
(mitochondria-targeted esculetin or Mito-Esc) reduces atherosclerosis by delaying vascular
senescence and pro-inflammatory processes, and by increasing mitochondrial biogenesis.
Furthermore, in humans, it has been demonstrated that pioglitazone, an anti-diabetic
drug, stimulates mitochondrial biogenesis in the subcutaneous fat of patients with diabetes
mellitus, a strong risk factor for atherosclerotic disease, contributing to the lipid-lowering
effect of this drug [93].

Recently, Dorighello et al. [94] showed that reducing the endogenous production
of mitochondria-related oxidants can counteract atherosclerosis progression, inducing a
mild mitochondrial uncoupling and thus decreasing oxidant generation, resulting in a
decrease in development within the hypercholesterolemic LDLr-/- model. Additionally,
treatment with low doses of DNP (2,4-dinitrophenol) did not alter classical risk factors for
atherosclerosis in the LDLr-/- mice, reinforcing that mitochondrial ROS in the arterial wall
have a crucial pro-atherogenic role.

5. Current Gaps and Future Research

In view of the multiple mechanisms described above, the development of a drug that
has the pharmacodynamic and pharmacokinetic characteristics that allow it to modulate
mitochondrial function, with proven clinical efficacy, appears still far away.

The current knowledge of the mitochondrial mechanisms underlying cardiovascular
diseases is still limited and fragmented; therefore, basic and clinical research have the
primary goal to better define the pathways involved, in order to identify a more precise
therapeutic target.

However, several issues should be taken into account. The first problem is mito-
chondrion specificity. Previously published research on antioxidants clearly indicates that
in the absence of specificity, these agents do not act on mitochondrial activity only and
inhibit reactive oxygen species (ROS) generated from multiple sources, with controversial
clinical benefits. Improved pharmacological strategies now offer the possibility of target-
ing antioxidants to the mitochondria using cationic molecules which have the ability to
accumulate spontaneously in the mitochondrial matrix [95,96]. However, the dysfunctional
mitochondrion could present transmembrane potential abnormalities, thus altering the
mitochondrial capacity to accumulate the drug delivered by cation-based strategies [97–99].

The second problem is the pharmacokinetic activity and biodistribution of the potential
drug. To date, a tissue-specific strategy is missing. With systemic administration, any
medication inevitably interacts with mitochondria, not only of the cardiovascular system,
thus limiting the bioavailability, at the doses deemed safe, of some MTAs in the sites of
interest [85].



Int. J. Mol. Sci. 2023, 24, 1086 7 of 12

It is known that several mitochondrial proteins are necessary for embryonic develop-
ment and/or adult survival, especially for their bioenergetic functions. An example of this
essential role is somatic cytochrome c (CYCS), which plays the role of electronic shuttle of
the respiratory chain [100] and whose absence leads to in uterus death [101]. Unfortunately,
many mitochondrial proteins exist in multiple isoforms and with multiple functions [102].
Genetic and functional redundancy complicates the generation of suitable experimental
models [85].

Similarly, it is difficult to monitor mitochondrial function in vivo. Despite the pos-
sibility to measure the carbonylation of circulating proteins or lipoproteins to monitor
oxidative stress in the context of CVD [103], this technique is not tissue specific and thus
makes it impossible to clearly define the source of ROS. In the last few years, technological
advancements have made it possible to measure, more specifically, the carbonylation of
cardiac proteins, such as myosin binding protein C, cardiac type (MYBPC). However, it is
not really specific for the identification of the ROS source, and it can be performed only
post-mortem [104].

Recently, energy metabolites measured by mass spectrometry have been proposed
as potential markers. However, the clinical applicability remains a matter of debate [105].
More promising results are instead linked to the MitoTimer mouse, which represents
the most advanced experimental model of mitochondrial dysfunction in the preclinical
cardiovascular field [106,107] providing the possibility of studying the mitochondrial
structure, the redox state, and the mitophagy function [106,107].

Furthermore, a series of radioactive tracers seem to represent a good potential for mon-
itoring mitochondrial functions in the CV field [108]. In this context, pre-specified studies
could open a new frontier to better evaluate the link between mitochondrial dysfunction
and multiple forms of CVD.

In the last decade, several experimental evidences on animal models have pointed out
a significant gender related difference in CVD development [109]. These observations are
also supported by real-life epidemiological data [110–112]. However, the evaluation of this
aspect in correlation with mitochondrial dysfunction is completely missing.

Finally, the time factor should be considered. Atherosclerosis is a time-dependent
chronic disease and at the moment of its clinical relevance, the etiopathogenetic fac-
tors have already reached a degree of expression which in some cases is irreversible [8].
Atherosclerosis-mediated CVDs mainly involve older individuals with other comorbidities
beyond age, such as obesity, hypertension, diabetes, and immune frailty, thus defining
progression and treatment sensitivity of CVD [113,114]. To date, few experimental models
reproduce this clinical condition, further limiting our knowledge on the mixed contribution
of these comorbidities on mitochondrial function.

Taking together all these limitations, future research should be directed to (a) im-
prove the pharmacodynamic and pharmacokinetic properties of therapeutic strategies,
(b) study in depth the mechanisms related to mitochondrial function, (c) reevaluate the
pathogenesis of CVDs, or at least those such as atherosclerosis which strongly correlate
with mitochondrial dysfunction.

6. Conclusions

Atherosclerosis is a multifactorial disease. Multiple clinical trials and basic studies
have clearly demonstrated that the management of the known risk factors only is not
enough to limit the burden of this condition which underlies most cardiovascular diseases.
Increasing evidence suggests an important role for mitochondria in the initial steps of this
process. They regulate the inflammatory response and oxidative stress, two key steps that,
once dysfunctional, might modulate initiation and progression of the atherosclerotic lesion.
Thus, the modulation of mitochondrial function could delay the development of endothelial
dysfunction, which represents the primum movens of the atherosclerotic process. In this
context, it will be important for research, at both preclinical and clinical levels, to define the
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precise therapeutic interventions focusing on mitochondrial functions, considering all the
aforementioned factors such as age, sex, and relevant comorbidities.

In this review, we have summarized the latest data on the relationship between
mitochondrial functions and atherosclerosis, with a look in depth at endothelial dysfunction.
Although mitochondria have been recognized as a new therapeutic target in different
pathological contests, the current gaps in therapeutic strategies to manage mitochondrial
dysfunction do not allow for the provision of a clinical benefit in the development of
atherosclerosis. Both antioxidants and gene therapy are attractive approaches for the
treatment of atherosclerosis. However, further ongoing and new studies are needed to
identify the correct strategy for reducing the impact of mitochondrial dysfunction on the
progression of atherosclerosis.
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